Bookied Documentation
Release 0.0.1

Fabian Schuh

Feb 24, 2021

Contents

1 Structure

2 Outline
2.1 Installation e e e e e e e
2.2 bookiesports package L e e e e e e e e e
2.2.1 Submodules e e e e e e e e e
2.22 Modulecontents e e e e e e e e e e e e e e e e
23 Schema e e e e e
2.3.1 Schemata e e e e e e e e
24 Naming SCheme i e e e e e e e e e e e e e e e
2.4.1 Overview of variables e e e e e e
242 Internal Processing e
3 API

4 Indices and tables
Python Module Index

Index

15

17

19

21

Bookied Documentation, Release 0.0.1

BookieSports is a module that contains the management information for BOS. This management information describes
which sports are supported, which leagues and participants are available and how and what betting markets are created
and resolved.

Contents 1

Bookied Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Structure

This repository contains
* the sports with emta data supported by bookied
* schema files for validation of the provided data
* a python module to facilitate loading of the data

Folders: * bookiesports/: Contains the module that can be loaded from python to obtain the sports data. * bookies-
ports/bookiesports: Each sport has it’s own folder which carries the most important information in a sports-specific
index.yaml file. * bookiesports/schema/: Contains the yaml formated json schemata for validation of the bookie sports
files.

Bookied Documentation, Release 0.0.1

4 Chapter 1. Structure

CHAPTER 2

Outline

2.1 Installation

’ pip3 install bookiesports

2.2 bookiesports package

2.2.1 Submodules

bookiesports.cli module
bookiesports.datestring module

bookiesports.datestring.date_to_string (date_object=None)
rfc3339 conform string represenation of a date can also be given as str YYY Y-mm-dd HH:MM:SS

bookiesports.datestring.string_to_date (date_string=None)
assumes rfc3339 conform string and creates date object

bookiesports.exceptions module

exception bookiesports.exceptions.SportsNotFoundError
Bases: Exception

bookiesports.log module

Bookied Documentation, Release 0.0.1

bookiesports.normalize module
exception bookiesports.normalize.EventGroupNotNormalizableException
Bases: bookiesports.normalize.NotNormalizableException

class bookiesports.normalize.IncidentsNormalizer (chain=None)
Bases: object

This class serves as the normalization entry point for incidents. All events / event group and participant names
are replaced with the counterpart stored in the bookiesports package.

DEFAULT_CHAIN = 'beatrice'
default chosen chain for bookiesports

NOT_FOUND = {}
As class variable to have one stream for missing normalization entries

NOT_FOUND_FILE = None
If normalization errors should be written to file, set file here

normalize (incident, errorlfNotFound=False)
static not_found (key)
static use_chain (chain, not_found_file=None)

exception bookiesports.normalize.NotNormalizableException
Bases: Exception

exception bookiesports.normalize.ParicipantNotNormalizableException
Bases: bookiesports.normalize.NotNormalizableException

exception bookiesports.normalize.SportNotNormalizableException
Bases: bookiesports.normalize.NotNormalizableException

2.2.2 Module contents
class bookiesports.BookieSports (chain=None, override_cache=False, **kwargs)
Bases: dict
This class allows to read the data provided by bookiesports
On instantiation of this class the following procedure happens internally:
1. Open the directory that stores the sports
2. Load all Sports
3. For each sport, load the corresponding data subset (event groups, events, rules, participants, etc.)
4. Validate each data subset
5. Perform consistency checks
6. Instantiate a dictionary (self)

As a result, the following call will return a dictionary with all the bookiesports:

from bookiesports import BookieSports
x = BookieSports ()

Parameters

6 Chapter 2. Outline

Bookied Documentation, Release 0.0.1

* chain (string)— One out ‘alice’, ‘beatrice’, or ‘charlie’ to identify which network we
are working with. Can also be a relative path to a locally stored copy of a sports folder

* override_cache (string) — if true, cache is ignored and sports folder is forcibly
reloaded and put into cache

* network (string)— deprecated, please use chain

It is possible to overload a custom sports_folder by providing it to BookieSports as parameter.
BASE_FOLDER = '/home/docs/checkouts/readthedocs.org/user_builds/bookiesports/checkouts

CHAIN_ CACHE = {}
Singelton to store data and prevent rereading if BookieSports is instantiated multiple times

DEFAULT CHAIN = 'beatrice'

JSON_SCHEMA = None
Schema for validation of the data

SPORTS_FOLDER = None
chain id
static list_chains()

static list_networks ()
@deprecated please use list_chains

network
@deprecated use self.index

network_ name
@deprecated please use self.chain

static version|()

2.3 Schema

For validation of the data format presented in the sports folder, a validation is performed. The corresponding vali-
dation schemata are stored in the schema/ subdirectory and used internally when instantiating bookiesports.
BookieSports.

2.3.1 Schemata

Genera definitions

definitions:

identifier:
type: string
description: Identification string for the

id:
description: Blockchain id of the object (e.g. 1.16.0)
pattern: "7 [0-9]#\\.[0-9]+\\.[0-9]%S"

(continues on next page)

2.3. Schema 7

Bookied Documentation, Release 0.0.1

(continued from previous page)

internationalized name:
type: object
description: Internationalized name
properties:

en:

type: string

description: English name of the sport
required:

- en

aliases:
type:
- "null"
- array
oneOf:
- type: "null"
- type: array
description: List of known aliases
items:
type: string

asset:
type: array
description: Asset symbol
uniqueltems: true
items:
- type: string
- enum:
- PPY
- BTC
— BTCTEST
- BTF
— BTFUN
- TEST

Sport

$schema: "http://json-schema.org/draft-06/schema#"
title: BookieSports::Sport

description: Format for BookieSports::Sport

type: object

properties:
identifier:
Sref: "#/definitions/identifier"
name:
Sref: "#/definitions/internationalized_name"
aliases:
Sref: "#/definitions/aliases"
id:

Sref: "#/definitions/id"

(continues on next page)

Chapter 2. Outline

Bookied Documentation, Release 0.0.1

(continued from previous page)

eventgroups:

type: array

description: list of event groups that are in this sport
items:
type: string

required:

- identifier
- name

- id

- eventgroups

Eventgroup

$schema: "http://json-schema.org/draft-04/schema#"
title: BookieSports::EventGroup

description: Format for BookieSports::EventGroup
type: object

properties:

identifier:
Sref: "#/definitions/identifier"

name:

Sref: "#/definitions/internationalized_name"
aliases:

Sref: "#/definitions/aliases"
id:

Sref: "#/definitions/id"

participants:
description: Identifier for the teams
type: string

bettingmarketgroups:
type: array
description: list of identifiers for the betting market groups
items:
type: string

eventscheme:
type: object
description: Internationalized name after which the events are named on creation
properties:
name:
Sref: "#/definitions/internationalized_name"

start_date:
type: string
format: date-time

finish date:
type: string

(continues on next page)

2.3. Schema 9

Bookied Documentation, Release 0.0.1

(continued from previous page)

format: date-time

leadtime_Max:
type: number

required:
- identifier
- name
- id
- participants
- bettingmarketgroups
- eventscheme
#- start_date
#— finish_date
#- leadtime_Max

Participant

$schema: "http://json-schema.org/draft-06/schema#"
title: BookieSports::MarketBettingGroup

description: Format for BookieSports::MarketBettingGroup
type: object

properties:

participants:
description: List of participants
type: array
items:
type: object
properties:

identifier:
$ref: "#/definitions/identifier"

aliases:
Sref: "#/definitions/aliases"

name:
Sref: "#/definitions/internationalized_name"
required:
- participants
Rule

$schema: "http://json-schema.org/draft-06/schema#"
title: BookieSports::MarketBettingGroup

description: Format for BookieSports::MarketBettingGroup
type: object

properties:

identifier:
Sref: "#/definitions/identifier"

(continues on next page)

10

Chapter 2. Outline

Bookied Documentation, Release 0.0.1

(continued from previous page)

name:

S$ref: "#/definitions/internationalized_name"
description:

$ref: "#/definitions/internationalized_name"
id:

S$ref: "#/definitions/id"

grading:

type: object

description: Grading for the rule
properties:

metric:
type: string
description: Calculate metric according to this

resolutions:
type: array
descriptions: Resolve betting markets according to the rules here

items:

type: object
properties:
win:

type: string

description: If true this market is win
not_win:

type: string

description: If true this market is not_win
void:

type: string

description: If true this market is void

required:
- metric
- resolutions

required:
— ldentifier
- id
- name
— description
- grading

BettingMarketGroup

$schema: "http://json-schema.org/draft-06/schema#"
title: BookieSports::MarketBettingGroup

description: Format for BookieSports::MarketBettingGroup
type: object

properties:

description:

(continues on next page)

2.3. Schema 11

Bookied Documentation, Release 0.0.1

(continued from previous page)

Sref: "#/definitions/internationalized_name"

asset:
Sref: "#/definitions/asset"

dynamic:
description: Is this a dynamic BMG (like a NFL handicap or NBA Over-under BMG)?
anyOf:
- type: string
enum:

- ou # Over under
- hc # handicap
- type: boolean

number_betting markets:

type: number

description: Number of Betting Markets in this BMG
items:
type: string

is_live:

type: boolean

description: WIll this BMG be turned Live at Event start? This is YES for all BMGs,_,
—at launch

rules:

type: string

description: Human readable rules that the Grading Algorithm is a machine-readable_
—instantiation of

bettingmarkets:
type: array
description: Betting markets to open
items:
type: object
properties:
description:
$ref: "#/definitions/internationalized_name"

required:
— description
— asset
- dynamic
- number_betting_markets
- is_live
- rules
- bettingmarkets

2.4 Naming Scheme

Some bookiesports files (in particular name and description fields) allow the use of variables. Those are dynamic
and filled in by bookie—-sync, automatically.

As an example, the file MLB_MIL_1.yaml defines betting markets for a Moneyline market group. The betting markets
carry the name of the event participants. We encode this in bookiesports using variables::

12 Chapter 2. Outline

Bookied Documentation, Release 0.0.1

bettingmarkets:
— description:
en: ' !
— description:
en: ' !

2.4.1 Overview of variables

* teams:
— {teams.home}: Home team
— {teams.away}: Away team
e result:

— {teams.home}: Points for home team

{teams.away}: Points for away team

{teams.hometeam}: Points for home team

— {teams.awayteam}: Points for away team
— {teams.total}: Total Points
* handicaps:
— {teams.home}: Comparative (symmetric) Handicaps (e.g., +-2) for home team

— {teams.away}: Comparative (symmetric) Handicaps (e.g., +-2) for away team

{teams.home_score}: Absolute handicap for home team (e.g., 2)
— {teams.away_score}: Absolute handicap for away team (e.g., 0)
* overunder:

— {teams.value}: The over-/under value

2.4.2 Internal Processing

The variable parsing is done in bos-sync (substitutions.py) and work through decode_variables and
a few classes that deal with the variables. This allows us to have complex variable substitutions.

The variables all consist of a module identifier and the actual member variable::

{module.member}

All modules are listed in the substitutions variable in decode_variables::

substitutions = {
"teams": Teams,
"result": Result,
"handicaps": Handicaps,
"overunder": OverUnder,

The modules themselves (captical first letter) are defined in the same file and can be as easy as

2.4. Naming Scheme 13

Bookied Documentation, Release 0.0.1

class Result:
""" Defines a few variables to be used in conjuctions with {result.X}
def _ _init__ (self, xxkwargs):
result = kwargs.get ("result", [0, 0]) or [0, O]
self.hometeam = result[0]
self.awayteam = result[1]

self.total = sum([float (x) for x in result])
aliases

self.home self.hometeam
self.away = self.awayteam

and as complex as

class Teams:

"mnm pDefines a few variables to be used in conjuctions with {teams.X}
J
non

def _ init_ (self, =xxkwargs):
teams = kwargs.get ("teams", ["", ""]) oxr ["", ""]
self.home = " ".join ([
x.capitalize() for x in teams[0].split (" ")])
self.away = " ".join ([
x.capitalize() for x in teams[1].split (" ")1)

14 Chapter 2. Outline

CHAPTER 3

API

15

Bookied Documentation, Release 0.0.1

16 Chapter 3. API

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

17

Bookied Documentation, Release 0.0.1

18 Chapter 4. Indices and tables

Python Module Index

b

bookiesports, 6

bookiesports.
bookiesports.
bookiesports.
bookiesports.
bookiesports.

cli,5
datestring, 5
exceptions, 5
log, 5
normalize, 6

19

Bookied Documentation, Release 0.0.1

20

Python Module Index

Index

B

BASE_FOLDER (bookiesports.BookieSports attribute), 7
BookieSports (class in bookiesports), 6
bookiesports (module), 6

bookiesports.cli (module), 5
bookiesports.datestring (module), 5
bookiesports.exceptions (module), 5
bookiesports. log (module), 5
bookiesports.normalize (module), 6

C

CHAIN_CACHE (bookiesports.BookieSports attribute), 7
chain_id (bookiesports.BookieSports attribute), 7

D

date_to_string() (in
ports.datestring), 5

DEFAULT_CHAIN (bookiesports.BookieSports at-
tribute), 7

DEFAULT_CHAIN (bookies-
ports.normalize.IncidentsNormalizer attribute),
6

module bookies-

E

EventGroupNotNormalizableException, 6

IncidentsNormalizer
ports.normalize), 6

(class in bookies-

J

JSON__SCHEMA (bookiesports.BookieSports attribute), 7

L

list_chains () (bookiesports.BookieSports static
method), 7

list_networks () (bookiesports.BookieSports static
method), 7

N

network (bookiesports.BookieSports attribute), 7
network_name (bookiesports.BookieSports attribute),

7

normalize () (bookies-
ports.normalize.IncidentsNormalizer method),
6

NOT_FOUND (bookies-
ports.normalize.IncidentsNormalizer attribute),
6

not__found () (bookies-
ports.normalize.IncidentsNormalizer static
method), 6

NOT_FOUND_FILE (bookies-

ports.normalize.IncidentsNormalizer attribute),
6
NotNormalizableException, 6

P

ParicipantNotNormalizableException, 6

S

SportNotNormalizableException, 6
SPORTS_FOLDER (bookiesports.BookieSports at-

tribute), 7

SportsNotFoundError, 5

string_to_date () (in module bookies-
ports.datestring), 5

U

use_chain () (bookies-
ports.normalize.IncidentsNormalizer static

method), 6

\Y

version () (bookiesports.BookieSports static method),
7

21

	Structure
	Outline
	Installation
	bookiesports package
	Submodules
	Module contents

	Schema
	Schemata

	Naming Scheme
	Overview of variables
	Internal Processing

	API
	Indices and tables
	Python Module Index
	Index

